

This document contains confidential or proprietary information intended only for the recipient(s). If you are not one
of the intended recipients, please contact Tradesignal GmbH and delete this document immediately. Any
unauthorized copying or distribution of this document or the unauthorized disclosure of all or part of the
information contained herein, is expressly forbidden.

Copyright (c) 2014 Tradesignal GmbH. All rights reserved. Tradesignal and the Tradesignal logo are registered
trademarks of Tradesignal GmbH.

Published: 07.03.2014

Tradesignal OpenConnect SDK 6.2

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 2

Introduction

Organizations increasingly require the advanced charting and analysis capabilities of

Tradesignal products to run against proprietary in-house data sources.

Tradesignal OpenConnect is a Windows service that sits between the proprietary data

source and the DataConnect Service; regulating data flow from one to the other. The

creation of an Adapter Module that Tradesignal OpenConnect uses to communicate with the

upstream data source is all that is required to facilitate such data access. Creation of a new

Adapter Module for a familiar data source is anticipated to take between two and four weeks.

This document describes the Tradesignal OpenConnect framework and the necessary tasks

an Adapter Module must perform in order to successfully integrate with the framework.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 3

Table of Contents
The architecture of DataConnect with Tradesignal OpenConnect ... 6

Contents of the Tradesignal OpenConnect SDK .. 7

Building and running the sample projects ... 7

Connecting DataConnect to an OpenConnect server ... 7

The Tradesignal OpenConnect service, Adapter Modules and Deployment 8

Deploying an Adapter Module .. 8

OpenConnect.exe .. 8

OpenConnect.ini... 9

OpenConnect.log ... 9

Creating an Adapter Module ...10

HRESULT return types ..10

Security Lists ...10

Common coding mistakes and gotchas ...14

Supporting creation of forward curves and seasonal charts ..15

Supporting rolling forward symbols (User-Defined Continuation Symbols)15

Collecting Data vs On-demand Data ...16

OpenConnect COM Interfaces ..17

Application Programmers Interface (API) ..18

IOpenConnectAdapterModule : Dispatch ..18

IOpenConnectAdapterModule2 : IOpenConnectAdapterModule20

IOpenConnectAdapterModule3 : IOpenConnectAdapterModule221

IResolveLevel2SymbolRequest : Dispatch ..21

IOnDemandSecurityCatalogue : Dispatch ...21

IServiceSpec : Dispatch ..22

IConnectionRequest : Dispatch ...23

ISecurityListRequest : Dispatch ..24

ISecurityAccessRightsRequest : Dispatch ..24

ISubscriptionRequest : Dispatch ...24

IMetaFieldSet : Dispatch ...25

IMetaFieldSet2 : Dispatch ...28

IMetaFieldSet2 : Dispatch ...29

ISubscriptionUpdates : Dispatch ...30

IBarHistoryRequest : Dispatch ..31

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 4

IBarChunk : Dispatch ..31

ITickHistoryRequest : Dispatch ...32

ITickChunk : Dispatch ...32

ITickConfirmationRequest : Dispatch ..32

Constants : Module ...33

EDataPeriod : Enum ...33

ESecurityStatus : Enum ..33

EServerStatus : Enum ..34

ELogLevel : Enum ..34

EField : Enum ...34

ESecurityNotAvailable : Enum ..35

ECorrectionType : Enum ...35

ESecurityType : Enum ..35

ELevel2ResolveResult : Enum ..36

Appendix A – OpenConnect.ini Settings ...37

Section General ..37

Section Logging ..38

Section Internal ...39

Appendix B – Typical function call scenarios ..40

DataConnect Service Start Up ..40

DataConnect Service Shutdown ...40

Security added ..40

Security deleted ..40

Normal operation ..41

New user logs on and requests securities ...41

Appendix C – Passing time stamps in interface methods when using C++42

Converting from SYSTEMTIME to DATE keeping millisecond precision42

Converting from DATE to SYSTEMTIME keeping millisecond precision43

Appendix D – Defining additional fields ..44

Appendix E – Supplying Currency Conversion Information ...46

OpenConnect related settings ...46

DataConnect related settings ..47

Appendix F – Supporting non-default Weekly Candles ...48

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 5

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 6

The architecture of DataConnect with Tradesignal OpenConnect
The typical deployment architecture consists of one or more Tradesignal clients connecting

to a DataConnect service. The DataConnect service receives its data from the OpenConnect

service, which acts as a proxy to the Proprietary Data Server via the Adapter Module.

Figure 1 – Typical deployment of an OpenConnect service. The dashed box denotes a single physical
machine (OpenConnect could alternatively be deployed on a separate machine to DataConnect)

The main components are:

Tradesignal DataConnect Service – Service responsible for managing multiple client

connections, collecting historic data in an optimized format for fast delivery, disseminating

real-time quotes, client licensing and price corrections.

Tradesignal OpenConnect – Middleware that provides an open API allowing a DLL to be

created that facilitates the connection between DataConnect and a proprietary data source.

Adapter Module – DLL created specifically to implement the OpenConnect API and

complete the various requests by utilizing the interface of a proprietary data source.

Proprietary Data Server – The server, database or feed from which Tradesignal must

ultimately obtain data from.

Tradesignal

clients

« Windows Service »

DataConnect

Service

« Windows Service »

Tradesignal

OpenConnect

Proprietary Data

Server

« DLL »

Proprietary Data

Adapter Module

OpenConnect API

Data Source API

TCP/IP

TCP/IP

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 7

Contents of the Tradesignal OpenConnect SDK
The Tradesignal OpenConnect SDK setup will install the following items to the hard drive of a

development machine.

Item Description

Tradesignal OpenConnect SDK.pdf This document.

Bin/OpenConnect.exe The redistributable OpenConnect middleware.

Bin/OpenConnect.tlb COM Type library for the OpenConnect API.

Bin/OpenConnect.Interop.dll Redistributable .NET Wrapper to the COM Type library.

Samples/C#/TickPump Sample Visual Studio 2010 project that builds an Adapter
Module that will push random ticks to DataConnect via
OpenConnect.

Samples/C#/CSVFileHandler Sample Visual Studio 2010 project that builds an Adapter
Module that will monitor folders on the file system for
CSV formatted data files and deliver them as time series.
Changes to the files will be delivered to DataConnect as
new ticks/data corrections.

Building and running the sample projects

The two sample projects can be opened in Microsoft Visual Studio 2010 (or later versions)

and built in the normal way. The projects will automatically register the built Adapter Module

and copy the OpenConnect.exe file from the bin directory to the build directory.

Sample projects (once built) can be run through the debugger as follows:

1. Edit the sample project settings (right-click on the project in Solution Explorer and

select Properties).

2. Click on the Debug tab in the project settings window and under Start Action, select

Start External Program.

3. Enter the location of the OpenConnect.exe that has been copied to the build directory

in the field next to Start External Program.

4. Under Start Options in the field Command line arguments enter the switch “-d”.

5. Select Debug > Start Debugging on the main menu to run the sample in debug mode.

Connecting DataConnect to an OpenConnect server

To connect a TDMS to an OpenConnect server the following steps are necessary:

 Install DataConnect as normal (DataConnect 3.6 or greater must be used)

 During installation, select OpenConnect as the Infrastructure.

 When prompted, enter the service name that has been chosen for the OpenConnect

service (e.g. for the TickPump sample project one would enter SampleTickPump).

When using DataConnect 5 or above, select a (non-empty) prefix used to identify

symbols served by this feed.

 When prompted, enter the machine on which the OpenConnect service is running

(normally localhost).

 Obtain a license code for the use of OpenConnect with DataConnect (from the

Tradesignal support team) and register it with the DataConnect license manager.

 Ensure the OpenConnect service is running and restart the DataConnect service.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 8

The Tradesignal OpenConnect service, Adapter Modules and

Deployment
An Adapter Module is an in-proc free-threaded COM server containing a CoClass that

implements the required OpenConnect adapter module interface. The Class ID of the entry

point CoClass is specified in an .ini file that the OpenConnect service reads during start-up.

Deploying an Adapter Module

It is expected that a typical distribution of an OpenConnect service will consist of the

following files, located in a single directory on the deployment server:

File Description

OpenConnect.exe The windows service.

OpenConnect.ini The initialization file that configures OpenConnect and can be
accessed from the adapter module via COM interfaces.

OpenConnect.Interop.dll .NET helper library that must be deployed with OpenConnect
only if the adapter module is a .NET assembly.

C++ v10 Runtime C++ dependency of OpenConnect.exe, see note below.

<adaptermodule>.dll * The bespoke adapter module COM Server.

<other files> Any files needed by the adapter module.

* COM servers must be registered on the deployment system, if it is a C/C++ COM DLL then

regsvr32.exe should be used for registration, if it is a .NET COM DLL then use regasm.exe.

Important Note: OpenConnect.exe is dependent on the C++ runtime version 10.0.40219.1.

The deployment mechanism must ensure that all necessary DLLs are present on the

deployment machine. It is recommended to include the merge module

Microsoft_VC100_CRT_x86.msm when creating a setup for deployment.

OpenConnect.exe

OpenConnect.exe supports the following command line arguments:

Switch Description

-i Install as a windows service

-s Starts the windows service

-u Uninstall the windows service

-d Start in debug mode

Please ensure you are using administrator rights to install and start the service. Once the

service has been installed, the Windows Service Control Manager (SCM) should be used

from then on to start and stop it.

If OpenConnect.exe is run with the -d command line flag, it will operate like any normally run

application (without the background execution or automatic restart behavior of running under

the SCM). Running outside of the SCM is a useful feature for debugging while developing an

Adapter Module.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 9

It is possible to register multiple instances of OpenConnect.exe on a single machine, so long

as: they are in different directories; they use different Adapter Modules with unique service

names and COM Class IDs; and the OpenConnect.ini files specify different ports.

OpenConnect.ini

The initialization file for OpenConnect is used to identify the Adapter Module to be used. The

OpenConnect.ini file must be an ANSI encoded text file present in the same directory as

OpenConnect.exe. On start-up, OpenConnect.exe will look for the following setting:

[General]

AdapterModuleClassId = <class id GUID> ; e.g. {6C4D8623-C999-4180-A0F6-F986F610165B}

Upon finding the setting, OpenConnect will attempt to create an instance of the CoClass with

that Class ID. This CoClass must implement the interface IOpenConnectAdapterModule

found in the Type Library associated with OpenConnect.exe.

There are a number of other settings that may be specified in OpenConnect.ini although its

main function is to consolidate all settings for both OpenConnect.exe and the Adapter

Module. Any setting in the file can be read by the Adapter Module using the specific

IConnectionRequest.Get<type>Setting() methods. See Appendix A – OpenConnect.ini

Settings for a description of the OpenConnect.ini file settings.

When starting OpenConnect.exe with the –d option (e.g. for debugging purposes), it might be

helpful to set the following configuration option that instructs OpenConnect to mirror all

output written to the log file also to the Console window:

[Internal]

StandardOutput=1

OpenConnect.log

Messages from both OpenConnect.exe and an Adapter Module will be written to the

OpenConnect.log file located in the same directory as OpenConnect.exe. Certain types of

messages will additionally be written to the Windows Event Log so they may be picked up by

third-party monitoring software.

The various levels of message and where they will be sent are determined by the ELogLevel

enumeration. An Adapter Module can send its own messages to the log system using the

IConnectionRequest.WriteLogMessage() method.

Writing too many messages into the log system may introduce performance issues. It is

recommended to make use of the ELogLevel.LogDebug message type to ensure detailed

logging is present, but must first be enabled using the configuration setting:

[Log]

LogDebug=1

It should also be noted that use of the ELogLevel.LogImportant message type should be

restricted to very significant informational messages that occur rather infrequently. Such

messages are written to the Windows event log and generation of too many messages will

obscure important information. The best use of this level is to indicate start-up, successful

connection to a feed, shutdown, etc.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 10

Creating an Adapter Module

An Adapter Module is an in-proc COM server located in a DLL. The Adapter Module must

contain a creatable CoClass that implements the IOpenConnectAdapterModule interface that

is found in the type library of OpenConnect; see the file OpenConnect.tlb in the SDK bin

directory. For .NET projects the OpenConnect.Interop.dll file should be added as a project

reference in order to access the OpenConnect type library. The type library contains all other

interfaces that are necessary to successfully implement an Adapter Module.

OpenConnect uses the free-threaded COM model; methods from the OpenConnect interface

can be safely called from many threads.

HRESULT return types

Unless otherwise indicated, API methods will only return the following values; specific details

will be sent to the log file. An Adapter Module is also expected to follow these conventions.

HRESULT Description

S_OK Method succeeded

E_INVALIDARG An invalid argument was provided

E_POINTER A null pointer argument was provided

E_OUTOFMEMORY Ran out of memory

E_FAIL Other failure cases (no connection, etc.)

Security Lists

Some types of requests require a result to be sent via the SendListAsXml() method of the

ISecurityListRequest interface. The expected XML responses are as described below.

OpenConnect supports arbitrary nested, hierarchic security list catalogues. Up to version 5.5,

the only way to provide the security list catalogue was to publish it completely in one go (see

below, requested through IOpenConnectAdapterModule.OnRequestSecurityList()). While this

approach fits many use cases nicely, it may not be well adapted to very large and complex

hierarchies or in the case where requesting the full catalogue at once from the upstream data

feed takes prohibitively long. Therefore OpenConnect offers an alternative way to publish the

security list catalogue in a drill-down, on-demand fashion. For more information please refer

to the section called ”On-demand security catalogue folder retrieval”.

Security list catalogue format (full catalogue request)

The below XML schema and following XML example, describe the expected result from a

security catalogue request. Below the document element, either folders or list elements may

be present. A folder element may additionally contain lists or additional folders (to an

arbitrary depth).

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="security-list-catalogue">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="folder" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="version" type="xs:decimal" use="required" />

 </xs:complexType>

 </xs:element>

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 11

 <xs:element name="folder">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="folder" minOccurs="0" maxOccurs="unbounded" />

 <xs:element maxOccurs="unbounded" name="list">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="lid" type="xs:string" use="required" />

 <xs:attribute name="type" type="xs:string" use="optional" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="name" type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

</xs:schema>

The lid value is the same value that will be supplied with the

IOpenConnectAdapterModule.OnRequestSecurityList() method to identify a list.

The type attribute should be from the following list (unknown or empty types will be ignored):

index, stock, future, rolling-future, bond, option, warrant, certificate, currency, other.

Example security list catalogue:

<?xml version="1.0" ?>

<security-list-catalogue version="1.0">

 <folder name="Stocks">

 <folder name="Germany">

 <list lid="DAX30">DAX 30</list>

 <list lid="MDAX">MDAX</list>

 </folder>

 <list lid="FTSE">FTSE</list>

 <list lid="INDU">Dow Jones Industrial Average</list>

 </folder>

 <folder name="Futures">

 <list lid="FDAX" type="future" >Dax Future Contracts</list>

 <list lid="S" type="future" >Soybeans Future Contracts</list>

 </folder>

</security-list-catalogue>

Security list format

The below XML schema and following XML example, describe the expected result from

either a security list request, or a search request. All attributes with the exception of sid are

optional, although if present will allow more client-side sub-searching and grouping

possibilities.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="security-list">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" name="item">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="sid" type="xs:string" use="required" />

 <xs:attribute name="ticker" type="xs:string" use="optional" />

 <xs:attribute name="type" type="xs:string" use="optional" />

 <xs:attribute name="isin" type="xs:string" use="optional" />

 <xs:attribute name="contractMonth" type="xs:decimal" use="optional" />

 <xs:attribute name="contractYear" type="xs:decimal" use="optional" />

 <xs:attribute name="rootCode" type="xs:string" use="optional" />

 </xs:extension>

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 12

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="version" type="xs:decimal" use="required" />

 <xs:attribute name="lid" type="xs:string" use="optional" />

 <xs:attribute name="name" type="xs:string" use="optional" />

 <xs:attribute name="type" type="xs:string" use="optional" />

 <xs:attribute name="contractperiod" type="xs:string" use="optional" />

 </xs:complexType>

 </xs:element>

</xs:schema>

The sid value is the same value that will be supplied with the

IOpenConnectAdapterModule.OnSubscribeSecurity() method to identify a security.

The type attribute should be from the following list (unknown or empty types will be ignored):

index, stock, future, rolling-future, bond, option, warrant, certificate, currency, other.

The contract period attribute can be specified as an optional hint for the trading period of

futures contracts and should be one of the following strings: days, weeks, months, quarters,

years.

The security list item attributes contract month, contract year and root code should be

specified for futures contracts, containing expiry and future root code information.

Example symbol list for stocks:

<?xml version="1.0" ?>

<security-list version="1.1" lid="DAX2" name="DAX 2 Composite">

 <item sid="SIEGn.DE" ticker="SIE" type="stock" isin="DE0007236101">Siemens</item>

 <item sid="DTEGn.DE" ticker="DTE" type="stock" isin="DE0005557508">Deutsche Telekom</item>

</security-list>

Example symbol list for futures:

<?xml version="1.0" ?>

<security-list version="1.1" lid="FutFDAX" name="EUREX DAX Futures" contractperiod="months">

 <item sid="FDXH3" type="future" rootCode="FDX" contractMonth="3" contractYear="2013">

 DAX Future March 2013

 </item>

 <item sid="FDXM3" type="future" rootCode="FDX" contractMonth="6" contractYear="2013">

 DAX Future June 2013

 </item>

 <item sid="FDXU3" type="future" rootCode="FDX" contractMonth="7" contractYear="2013">

 DAX Future September 2013

 </item>

 <item sid="FDXZ3" type="future" rootCode="FDX" contractMonth="12" contractYear="2013">

 DAX Future December 2013

 </item>

</security-list>

On-demand security catalogue folder retrieval (drill-down request)

Alternative to the full catalogue retrieval, DataConnect can be instructed to retrieve catalogue

nodes on-demand. This means that when a Tradesignal user navigates through the symbol

catalogue, the contents of every opened folder will be retrieved on folder-by-folder basis,

instead of using a cached version of the full security list catalogue.

OpenConnect adapter modules will have to support one of the two approaches, but there is

no need to support both. Requests for on-demand catalogue folders will only then be issued

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 13

by DataConnect, when the adapter module implements the IOnDemandSecurityCatalogue

interface. In that case, IOpenConnectAdapterModule.OnRequestSecurityList() will never be

fired.

Requests for a specific folder in the catalogue hierarchy will be forwarded via

IOnDemandSecurityCatalogue.OnRequestFolder(), passing in a string uniquely identifying

the folder in question. By convention, the top-most folder will be identified through the empty

string. The unique identifier for all sub-nodes is arbitrarily assignable by the OpenConnect

module implementer.

Example security list catalogue hierarchy (underlined names denote symbol lists):

Stocks
Germany

DAX 30
(ADS, ALV, BAS, …)

USA
NYSE

(ABT, ACN, AGN, …)
NASDAQ
 (AAPL, ADBE, ADP, …)

Futures
USA

Commodities
Soy

(SZ2, SH3, SM3, …)
Wheat

(WZ2, WH3, WM3, …)

The top-folder request (id = “”) would then return an Xml response similar to the following

example (to be sent via the passed in ISecurityListRequest interface):

<?xml version="1.0" ?>

<folder fid="">

 <folder name="Stocks" fid="stocks" />

 <folder name="Futures" fid="futures" />

</folder>

The values supplied in the fid attribute of the inner folder nodes can be arbitrarily chosen by

the OpenConnect adapter module implementer (as long as they resemble valid Xml attribute

strings).

A drill-down request for the contents of the “Stocks” folder (via the folder id “stocks”) would

yield this:

<?xml version="1.0" ?>

<folder fid="stocks">

 <folder name="Germany" fid="stocks|germany" />

 <folder name="USA" fid="futures|usa" />

</folder>

A further drill-down request for the contents of the “Germany” folder inside the “Stocks” folder

(via the folder id “stocks|germany”) would yield this (note the usage of the <list> node and lid

attribute):

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 14

<?xml version="1.0" ?>

<folder fid="stocks|germany">

 <list name="DAX 30" lid="chain:dax30" />

</folder>

Drilling down into groups of unknown contents

For some upstream data feeds it may be difficult to determine the type of a security

catalogue group beforehand, i.e. a folder or a terminal list without actually populating the

contents of the node. The OpenConnect API therefore allows to return <unknown> nodes

instead of <folder> or <list> to enable fast response times and therefore a better user

experience:

<?xml version="1.0" ?>

<folder fid="myId">

 <unknown name="DAX 30" id="chain:dax30" />

</folder>

The determination of the actual type is then delayed until the Tradesignal user actually opens

a specific node. The request for the type of a node will be forwarded through

IOnDemandSecurityCatalogue.OnRequestGroupType(), passing in the id of the group in

question. The response has to be published via the ISecurityListRequest interface:

<?xml version="1.0" ?>

<unknown id="chain:dax30">

 <list name="DAX 30" lid="chain:dax30" />

</folder>

In case the requested group is actually a folder, the response would look like this:

<?xml version="1.0" ?>

<unknown id="stocks|germany">

 <folder name="Germany" fid="stocks|germany" />

</folder>

Common coding mistakes and gotchas

Ensuring unique time stamps

DataConnect requires that the feed handler supplies unique time stamps for bars and ticks.

This is essentially for two reasons:

1. It guarantees that there are no data ordering issues because the feed handler author

is forced to consider this issue

2. DataConnect requires a completely deterministic way to inform the feed handler of

the last tick that it received even when a feed handler has no support for unique trade

IDs

For handling time stamps with millisecond granularity in C++, see Appendix C – Passing time

stamps in interface methods when using C++.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 15

Ensuring asynchronous responses to DataConnect requests

Most of the callbacks that must be implemented as part of the IOpenConnectAdapterModule

expect prompt returns and that the supplied interface is used some time later to answer the

original request. Such behavior almost certainly requires a separate thread to be managing

the response interfaces.

Blocking inside the request callbacks, for example when waiting for a database operation to

complete, will normally result in a timeout message in DataConnect. Please favour doing

database queries in a background thread; all response interfaces are free-threaded and so

can be used safely between multiple threads.

Supporting creation of forward curves and seasonal charts

Forward curves and seasonal charts in Tradesignal are created and stored based on symbol

lists. In order to support creation of those chart types, the symbol lists must be tagged as

containing future symbols (type=”future”) and provide the fields: type, rootCode,

contractMonth and contractYear for each symbol in a list.

Additionally, it is necessary to allow Tradesignal clients to search for a specific symbol list.

This will be done by a normal symbol list request. The list id requested will then be a root

code or a symbol name post-fixed by either ~rel (for active contracts) or ~exp (for expired

contracts) to indicate what type of list is currently requested. The adapter module has to

correctly resolve those requests to real symbol lists of the appropriate type. For example:

FX~rel – A search for a related symbol list, this would expect to get a symbol list back

containing all currently active symbols related to the given root code: FX. The correct name

of that symbol list has to be supplied in the lid attribute of the resulting symbol list.

FX~exp – A search for a related symbol list containing expired contracts related to the given

root code: FX. The correct name of that symbol list should be supplied in the lid attribute of

the symbol resulting list.

Important: Symbol lists containing the currently active contracts (~rel) have to be sorted

ascending by their expiry date. Expired symbol list (~exp) have to be sorted descending.

Tradesignal also allows creating forward curves directly from an Equilla Script, passing in a

symbol code that is used as the basis for the forward curve computation. To enable this

functionality, the symbol must supply root code information. This can be achieved by

specifying a contract’s root code in the meta field data basis through the IMetaField2 interface

and the SetStringField function, providing “OC_ROOT_CODE” as the field identifier and the actual

root code as the value.

Supporting rolling forward symbols (User-Defined Continuation Symbols)

Since DataConnect 5.2.0, it is possible to create user-defined continuation symbols (UDCs)

in DataConnect. Those symbols will be created based on root codes identifying the

underlying future symbols and two matching symbol lists providing the current and the

expired symbols of the base root code (see the previous section for an explanation on

naming such lists and how they will be requested).

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 16

DataConnect will supply a related and an expired search for the root code given by the user.

The UDC will get successfully created if the symbol list requests succeed and the

DataConnect gets valid list ids back. Based on these lists the UDC symbol will be created.

Important: Symbol lists containing the currently active contracts have to be sorted

ascending by their expiry date. Expired symbol list have to be sorted descending.

Collecting Data vs On-demand Data

OpenConnect can be configured to not collect and store data in DataConnect, but instead to

delegate all historic data requests in all periods to the Adapter Module. This mode is

activated by setting the PersistentSymbols property in the General section of

OpenConnect.ini to 0.

The on-demand data mode is most useful where the upstream data source already stores

pre-cumulated data (minute, hourly, daily, etc.) and represents the only location where data

corrections and the like can occur (assuming there is no mechanism to forward them to

DataConnect).

Please note: Care must be taken with the on-demand mode that the adapter module and

upstream databases can cope with the additional load a group of users will incur when the

DataConnect is no longer responsible for storage of (and fast access to) the data.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 17

OpenConnect COM Interfaces

The interfaces used by an Adapter Module can be seen in the following class diagram. For a

full description of each interface, enumeration and method, please refer to the next section.

+OnRegisterModule()

+OnConnect()

+OnDisconnect()

+OnRequestSecurityListCatalogue()

+OnRequestSecurityList()

+OnRequestSecurityAccessRights()

+OnRequestBarHistory()

+OnRequestBarHistoryFromDate()

+OnRequestTickHistory()

+OnRequestTickHistoryFromDate()

+OnSubscribeSecurity()

+OnUnsubscribeSecurity()

+OnTickCorrected()

«interface»

IOpenConnectAdapterModule

+SetWindowsServiceName()

+SetFeedServiceName()

+SetSupportsUniqueTickIdentifiers()

+SetSupportsUserSpecificSecurityAccess()

+SetSupportsUserSpecificSecurityLists()

+SetSupportedHistoricDataPeriods()

«interface»

IServiceSpec

+UpdateServerStatus()

+UpdateServerTimeStatus()

+UpdateServerTimeUTC()

+WriteLogMessage()

+GetStringSetting()

+GetIntSetting()

+GetBoolSetting()

+GetDoubleSetting()

«interface»

IConnectionRequest

+CreateMetaFieldSet()

+SendInitialMetaFields()

+UpdateSecurityStatus()

+SecurityNotAvailable()

«interface»

ISubscriptionRequest

+CreateHistoricChunk()

+SendHistoricChunk()

«interface»

IBarHistoryRequest

+CreateHistoricChunk()

+SendHistoricChunk()

«interface»

ITickHistoryRequest

+SendListAsXml()

«interface»

ISecurityListRequest

+Add()

«interface»

IBarChunk

+Add()

«interface»

ITickChunk
+SendNewTick()

+SendTickUpdate()

+SendDeleteTick()

«interface»

ISubscriptionUpdates

+SetDisplayName()

+SetDisplayNameKanji()

+SetExchangeCode()

+SetDisplayUnit()

+SetTradeUnit()

+SetContractSize()

+SetExpiryDate()

+SetTickSize()

+SetCurrencyCode()

+SetSessions()

+SetExchangeTimezone()

+SetDayOpen()

+SetDayHigh()

+SetDayLow()

+SetDayVolume()

+SetTicker()

+SetIsin()

+SetBidN()

+SetAskN()

+SetBidAndToneN()

+SetAskAndToneN()

+SetSecurityType()

+EnableFieldCollection()

+SetDisplayNameForLastField()

«interface»

IMetaFieldSet

+ConfirmNewTick()

«interface»

ITickConfirmationRequest

+SetSecurityAccessRight()

«interface»

ISecurityAccessRightsRequest

Figure 2 – OpenConnect framework interfaces

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 18

Application Programmers Interface (API)
The Tradesignal OpenConnect library provides the following interfaces for use by

implementers to create an Adapter Module that will regulate the communication between

OpenConnect and a third-party database or data feed.

IOpenConnectAdapterModule : Dispatch

The Adapter Module must define a Creatable CoClass that implements this interface to

handle requests from the OpenConnect service. The CLSID (GUID) of that CoClass must be

saved in OpenConnect.ini as '[General]/AdapterModuleClassId'.

OnRegisterModule

OnRegisterModule(«in» serviceSpec : IServiceSpec*) : void

Called shortly after the DLL is attached to query parameters concerning this service.

OnConnect

OnConnect(«in» connection : IConnectionRequest*) : void

Called to instruct the Adapter module to connect to the data source and send server time.

OnDisconnect

OnDisconnect() : void

Called to instruct the Adapter Module to close the connection.

OnRequestSecurityListCatalogue

OnRequestSecurityListCatalogue(«in» user : string,

 «in» listRequest : ISecurityListRequest*) : void

Called to obtain the catalogue of security lists for a given user, or all users if the user

parameter is NULL.

OnRequestSecurityList

OnRequestSecurityList(«in» user : string, «in» list : string,

 «in» listRequest : ISecurityListRequest*) : void

Called to obtain a security list for a given user or all users if the user parameter is NULL.

OnRequestSecurityAccessRights

OnRequestSecurityAccessRights(«in» user : string, «in» security : string,

 «in» rightsRequest : ISecurityAccessRightsRequest*) : void

Called to query if the selected user is allowed to access the specified security.

OnRequestBarHistory

OnRequestBarHistory(«in» security : string, «in» field : EField,

 «in» period : EDataPeriod,

 «in» historyRequest : IBarHistoryRequest*) : void

Called to obtain all the historic data for a given security/field pair in a specified period. The

history should be sent in chunks ordered from newest to oldest data.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 19

OnRequestBarHistoryFromDate

OnRequestBarHistoryFromDate(«in» security : string, «in» field : EField,

 «in» period : EDataPeriod,

 «in» historyRequest : IBarHistoryRequest*,

 «in» fromDateTime : DATE) : void

Called to obtain the historic data for a given security/field pair in a specified period from a

given date time. The history should be sent in chunks ordered from newest to oldest data.

OnRequestTickHistory

OnRequestTickHistory(«in» security : string, «in» field : EField,

 «in» historyRequest : ITickHistoryRequest*) : void

Called to obtain all the historic tick data for a given security/field pair. The history should be

sent in chunks ordered from newest to oldest data.

OnRequestTickHistoryFromDate

OnRequestTickHistoryFromDate(«in» security : string, «in» field : EField,

 «in» historyRequest : ITickHistoryRequest*,

 «in» fromDateTime : DATE) : void

Called to obtain the historic tick data for a given security/field pair from a given date time.

The history should be sent in chunks ordered from newest to oldest data.

OnSubscribeSecurity

OnSubscribeSecurity(«in» security : string,

 «in» subscriptionRequest : ISubscriptionRequest*) : void

Called to request the current data and updates/corrections as they occur for a given security.

Note that security identifiers must not contain whitespace characters and must not exceed

100 characters in length.

OnUnsubscribeSecurity

OnUnsubscribeSecurity(«in» security : string) : void

Called to request updates to a subscribed security be stopped.

OnTickCorrected

OnTickCorrected(«in» security : string, «in» field : EField,

 «in» correctionType : ECorrectionType, «in» timestamp : DATE,

 «in» value : double, «in» size : double, «in» tickId : int64,

 «in» confirmationRequest : ITickConfirmationRequest*) : void

Called to inform the Adapter Module on a manual tick correction occurred in DataConnect.

The upstream server can then be updated to reflect this change, and optionally a new ID for

the tick stored in DataConnect can be returned via the confirmationRequest interface.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 20

IOpenConnectAdapterModule2 : IOpenConnectAdapterModule

This interface was introduced with the OpenConnect 5.7 SDK. It expands the

IOpenConnectAdapterModule interface with methods that allow more fine grained historic

data requests, potentially reducing the total data that needs to be transferred by a significant

amount. In addition to that the Online/Offline methods provide more detailed information

about the state of connectivity for the module implementer.

OnRequestLimitedBarHistory
OnRequestLimitedBarHistory («in» security : string, «in» field : EField,

 «in» period : EDataPeriod,

 «in» historyRequest : IBarHistoryRequest*,

 «in» fromDateTime : DATE,

 «in» toDateTime : DATE,

 «in» maxBars : int64) : void

Called to obtain the historic data for a given security/field pair in a specified period from a

given timestamp (fromDateTime) to an end timestamp (toDateTime). The amount of bars

provided via the historyRequest interface should not exceed the value specified by the

maxBars parameter. The history should be sent in chunks ordered from newest to oldest

data. If more data than maxBars is available the oldest bars should be omitted.

DataConnect will use OnRequestLimitedBarHistory in favour of OnRequestBarHistory when

the adapter module implements IOpenConnectAdapterModule2.

OnRequestLimitedTickHistory
OnRequestTickHistoryFromDate(«in» security : string, «in» field : EField,

 «in» historyRequest : ITickHistoryRequest*,

 «in» fromDateTime : DATE,

 «in» toDateTime : DATE,

 «in» maxTicks : int64) : void

Called to obtain the historic tick data for a given security/field pair from a given timestamp

(fromDateTime) to an end timestamp (toDateTime). The amount of ticks provided via the

historyRequest interface should not exceed the value specified by the maxTicks parameter.

The history should be sent in chunks ordered from newest to oldest data. If more data than

maxTicks is available the oldest ticks should be omitted.

DataConnect will use OnRequestLimitedTickHistory in favour of OnRequestTickHistory when

the adapter module implements IOpenConnectAdapterModule2.

OnDataConnectOnline
OnDataConnectOnline() : void

This is called to notify that a DataConnect connection has been established. In case the

OpenConnect feed is not using persistent symbols (pass-through mode) this notification will

be sent once the first client (e.g. Tradesignal or DataConnect Console) connects.

OnDataConnectOffline
OnDataConnectOffline() : void

This is called when the DataConnect connection is closed. If the OpenConnect feed is not

using persistent symbols (pass-through mode) this notification will be sent when the last

client (e.g. Tradesignal or DataConnect Console) disconnects.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 21

OnResolveLevel2Symbol
OnResolveLevel2Symbol(«in» security : string, «in» user : string,

 «in» level2Request : IResolveLevel2SymbolRequest) : void

The DataConnect server does not collect Level2 data but only forwards that data if explicitly

requested by a connected client. Supplying Level2 data for every subscribed instrument via

the IMetaFieldSet will therefore be unnecessary (and often inefficient) when no client has

explicitly shown interest to that kind of data. In those cases the delivery of said data can be

redirected to a dedicated symbol.

IOpenConnectAdapterModule3 : IOpenConnectAdapterModule2

This interface was introduced with the OpenConnect 5.9 SDK. It expands the

IOpenConnectAdapterModule interface with the ability to be notified when the underlying

configuration file is changed.

OnSettingsUpdated
OnSettingsUpdated() : void

This method is called when a change in the configuration file was detected. Adapter module

implementers can then use IOpenConnectRequest::Get<Type>Setting() methods to

update internally used settings.

IResolveLevel2SymbolRequest : Dispatch

This interface is for asynchronously responding to the OnResolveLevel2Symbol request. It

was introduced with the OpenConnect SDK 5.7.

SendResolvedLevel2Symbol
SendResolvedLevel2Symbol(«in» result : ELevel2ReolveResult,

 «in» resolvedLevel2Symbol : string) : void

This sends the result for the OnResolveLevel2Symbol request. If the adapter module does

not provide a separate symbol for Level2 data, the value of resolvedLevel2Symbol should be

identical to the name of the security as provided by OnResolveLevel2Symbol.

IOnDemandSecurityCatalogue : Dispatch

The CoClass implementing IOpenConnectAdapterModule may also implement this interface

to enable drill-down (on-demand) security catalogue requests on a folder-by-folder basis.

OnRequestFolder

OnRequestFolder(«in» user : string, «in» folderId : string,

 «in» listRequest : ISecurityListRequest*) : void

Called to obtain the contents of a specific catalogue folder for a given user, or all users if the

user parameter is NULL.

OnRequestGroupType

OnRequestGroupType(«in» user : string, «in» groupId : string,

 «in» listRequest : ISecurityListRequest*) : void

Called to obtain the type (folder or list) of a specific catalogue folder for a given user, or all

users if the user parameter is NULL. Forwarded when the response for OnRequestFolder

contains an <unknown> node.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 22

IServiceSpec : Dispatch

Used by an Adapter Module to specify the name and capabilities of the service.

SetWindowsServiceName

SetWindowsServiceName(«in» windowsServiceName : string) : void

Set the name of the service as it will be registered with the windows Service Control

Manager (SCM).

SetFeedServiceName

SetFeedServiceName(«in» feedServiceName : string) : void

Set the name of the service as it will be identified by DataConnect (no spaces).

SetSupportsUniqueTickIdentifiers

SetSupportsUniqueTickIdentifiers(«in» enabled : bool) : void

Set if the historic tick data will include a unique identifier for each tick to facilitate automatic

tick correction.

SetSupportsUserSpecificSecurityAccess

SetSupportsUserSpecificSecurityAccess(«in» enabled : bool) : void

Set if access rights must be checked for each user before accessing a security.

SetSupportsUserSpecificSecurityLists

SetSupportsUserSpecificSecurityLists(«in» enabled : bool) : void

Set if the symbol lists must be requested for each user or a global list for all users is

available.

SetSupportedHistoricDataPeriods

SetSupportedHistoricDataPeriods(«in» periodFlags : EDataPeriod) : void

Set which historic data periods are available (flags) from the upstream server.

This is a global setting for all symbols provided by an adapter module. In case the set of

periods that are deliverable can change based on the symbol, use EnableFieldCollection

from the IMetaFieldSet3 interface (instead of IMetaFieldSet) and set this to:

EDataPeriod.PeriodTick | EDataPeriod.Period1Min | EDataPeriod.Period5Min |

EDataPeriod.Period30Min | EDataPeriod.PeriodHourly | EDataPeriod.PeriodDaily |

EDataPeriod.PeriodWeekly | EDataPeriod.PeriodMonthly

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 23

IConnectionRequest : Dispatch

This interface provides methods to inform about server state change, setting server time and

interacting with the log and settings files.

UpdateServerStatus

UpdateServerStatus(«in» status : EServerStatus) : void

Update the server status to reflect the current connection state.

UpdateServerTimeStatus

UpdateServerTimeStatus(«in» status : ESecurityStatus) : void

Update the time instrument status.

UpdateServerTimeUTC

UpdateServerTimeUTC(«in» time : DATE) : void

Update the time in UTC, best called frequently (more than once a minute).

WriteLogMessage

WriteLogMessage(«in» logLevel : ELogLevel, «in» message : string) : void

Send a message to the OpenConnect log file. Messages with a log level of Error, Warning or

Important will be forwarded to the DataConnect server. By adding certain ini-file settings (see

Appendix A) these messages can also be forwarded to connected clients.

GetStringSetting

GetStringSetting(«in» section : string, «in» settingName : string,

 «inout» settingValue : string*) : void

Read a string setting from the OpenConnect configuration file, if the setting is not found in

file, the input settingValue will remain unchanged.

GetIntSetting

GetIntSetting(«in» section : string, «in» settingName : string,

 «inout» settingValue : int*) : void

Read an integer setting from the OpenConnect configuration file, if the setting is not found in

file, the input settingValue will remain unchanged.

GetBoolSetting

GetBoolSetting(«in» section : string, «in» settingName : string,

 «inout» settingValue : bool*) : void

Read a Boolean setting from the OpenConnect configuration file, if the setting is not found in

file, the input settingValue will remain unchanged.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 24

GetDoubleSetting

GetDoubleSetting(«in» section : string, «in» settingName : string,

 «inout» settingValue : double*) : void

Read a floating point setting from the OpenConnect configuration file, if the setting is not

found in file, the input settingValue will remain unchanged.

ISecurityListRequest : Dispatch

This interface is used to send XML Security Lists and Catalogues.

SendListAsXml

SendListAsXml(«in» listXml : string) : void

Send the requested XML document.

ISecurityAccessRightsRequest : Dispatch

This interface will receive information about the access rights to a security of a specific user.

SetSecurityAccessRight

SetSecurityAccessRight(authorized : bool) : void

Method to define the access rights of a user to a security.

ISubscriptionRequest : Dispatch

This interface is used to set the initial value of a security’s fields and obtain an interface to

inform about new ticks and corrections.

CreateMetaFieldSet

CreateMetaFieldSet() : IMetaFieldSet*

Factory method to create a meta field set.

SendInitialMetaFields

SendInitialMetaFields(«in» fields : IMetaFieldSet*,

 «out» updateInterface : ISubscriptionUpdates**) : void

Set the initial value of each supported meta field in the security, can also be used to force an

update to these fields without introducing new ticks. e.g. name changes.

UpdateSecurityStatus

UpdateSecurityStatus(«in» status : ESecurityStatus) : void

Set the status of the security requested.

SecurityNotAvailable

SecurityNotAvailable(«in» reason : ESecurityNotAvailable) : void

Mark security as not available.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 25

IMetaFieldSet : Dispatch

This interface is used to set meta data that is needed – but not collected – by DataConnect.

If a meta field is not required, the corresponding Set- method should not be called.

Please note: Extended fields and functions are available via the IMetaFieldSet2 and

IMetaFieldSet3 interfaces.

SetDisplayName

SetDisplayName(«in» displayName : string) : void

Set the display name.

SetDisplayNameKanji

SetDisplayNameKanji(«in» displayName : string) : void

Set the Kanji characters representing the display name (if applicable).

SetExchangeCode

SetExchangeCode(«in» exchangeCode : string) : void

Set exchange code.

SetDisplayUnit

SetDisplayUnit(«in» displayUnit : int) : void

Set the display unit, positive values is number of decimal places, negative for the fractional

denominator.

SetTradeUnit

SetTradeUnit(«in» tradeUnit : string) : void

Set trade unit in Reuters format: Bbl = Barrels, etc.

SetContractSize

SetContractSize(«in» contractSize : double) : void

Set the size of the contract in units (defined by tradeUnit field).

SetExpiryDate

SetExpiryDate(«in» expiryDate : DATE) : void

Sets the expiry date. Do not call this method for continuous items.

SetTickSize

SetTickSize(«in» tickSize : double) : void

Set the minimum possible price movement.

SetCurrencyCode

SetCurrencyCode(«in» currencyCode : string) : void

Set the currency code in ISO format: USD, EUR, JPY, GBP, etc.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 26

SetSessions

SetSessions(«in» sessions : string) : void

Set the sessions in Reuters format: MO-FR 0800-1700,SU 1900-1400

SetExchangeTimezone

SetExchangeTimezone(«in» timezone : string) : void

Set the exchange timezone in Olson format (e.g. Europe/London).

SetDayOpen

SetDayOpen(«in» open : double) : void

Set the Daily Open.

SetDayHigh

SetDayHigh(«in» high : double) : void

Set the Daily High.

SetDayLow

SetDayLow(«in» low : double) : void

Set the Daily Low.

SetDayVolume

SetDayVolume(«in» volume : double) : void

Set the Daily Volume.

SetBidN

SetBidN(«in» level : int, «in» value : double, «in» size : double) : void

Set the Nth bid level excluding the best bid (i.e. level 1).

SetAskN

SetAskN(«in» level : int, «in» value : double, «in» size : double) : void

Set the Nth ask level excluding the best ask (i.e. level 1).

EnableFieldCollection

EnableFieldCollection(«in» field : EField) : void

Enable the specified Field for tick collection.

When using OpenConnect 6.2. or above it is advised to use

IMetaFieldSet3.EnableFieldCollection for a better control over the creation of a field and the

various periods that are supported.

SetTicker

SetTicker(«in» ticker : string) : void

Set the ticker information.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 27

SetIsin

SetIsin(«in» isin : string) : void

Set the ISIN.

SetSecurityType

SetSecurityType(«in» securityType : ESecurityType) : void

Set the security type.

SetBidAndToneN

SetBidAndToneN(«in» level : int, «in» value : double, «in» size : double,

 «in» tone : string) : void

Set the Nth bid level excluding the best bid (i.e. level 1) with tone string.

SetAskAndToneN

SetAskAndToneN(«in» level : int, «in» value : double, «in» size : double,

 «in» tone : string) : void

Set the Nth ask level excluding the best ask (i.e. level 1) with tone string.

SetDisplayNameForLastField

SetDisplayNameForLastField(«in» displayName : string) : void

Set the display name for the last field. The display name must not exceed 20 characters in

length and must consist of an alphabetic character followed by alphanumeric or underscore

characters. Additionally, the field name cannot be one of the standard fields: VOL, OI, BID,

ASK, BVOL, AVOL, ID, IDB, BARTIME. If an invalid value is specified E_INVALIDARG will

be returned.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 28

IMetaFieldSet2 : Dispatch

This interface is used to set additional meta data that is needed – but not collected – by

DataConnect. If a meta field is not required, the corresponding Set- method should not be

called.

Available since OpenConnect version 5.7 in conjunction with DataConect 5.7 and above.

SetRolloverTime

SetRolloverTime(«in» hour : int, «in» minute : int) : void

Sets the session's daily rollover time for non-standard sessions that need a rollover other

than midnight (hour=0-23, minute=0-59).

SetSourceTimezoneHistoricData

SetSourceTimezoneHistoricData(«in» olsonTimezone : string) : void

Sets the timezone of the data provided by history request interface methods in Olson format

(e.g. Asia/Tokyo). UTC is assumed when this method is not called.

SetSourceTimezoneDataUpdates

SetSourceTimezoneDataUpdates(«in» olsonTimezone: string) : void

Sets the timezone of the data provided by subscription updates interface methods in Olson

format (e.g. America/New York). UTC is assumed when this method is not called.

SetStringField

SetStringField(«in» fieldId : string, «in» fieldValue : string) : void

Generic method to set the string value of a named meta field. See Appendix D – Defining

additional fields for more information.

SetIntegerField

SetIntegerField(«in» fieldId : string, «in» fieldValue : int) : void

Generic method to set the integer value of a named meta field. See Appendix D – Defining

additional fields for more information.

SetDoubleField

SetDoubleField(«in» fieldId : string, «in» fieldValue : double) : void

Generic method to set the double value of a named meta field. See Appendix D – Defining

additional fields for more information.

SetDisplayNameForUserDefinedField

SetDisplayNameForUserDefinedField(«in» userDefinedFieldId : EField, «in»

fieldDisplayName : string) : void

Method to set the display name for one of the user defined fields (FieldUsrDef1 -

FieldUsrDef10) that have been optionally enabled for tick collection via
IMetaFieldSet::EnableFieldCollection.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 29

IMetaFieldSet3 : Dispatch

This interface allows a more fine grained control over the creation of FIDs in DataConnect.

Available since OpenConnect version 6.2 in conjunction with DataConect 6.2 and above.

EnableFieldCollection

EnableFieldCollection(«in» field : EField, «in» collect : bool, «in» periods :

EDataPeriod) : void

Enable the specified Field for collection.

The collect argument defines, if this field should be automatically enabled and collected

when the symbol is newly created in DataConnect (true) or if it should be created on demand

as soon as the FID is specifically requested (e.g. by changing the FID value in Tradesignal’s

instrument properties). It is good practice to delay FID enablement for secondary FIDs to

save resources.

The periods parameter is a bit set of all the periods that are supported for the respective

symbol. For example, if a data feed does only support tick data for a symbol this should be

set to EDataPeriod.PeriodTick. For a symbol that supports only Daily data and above, this

could be set to EDataPeriod.PeriodDaily|EDataPeriod.PeriodWeekly|EDataPeriod.PeriodMonthly.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 30

ISubscriptionUpdates : Dispatch

This interface is used to send updates to the collectable fields of a security once it has been

initialized and meta fields have been set. All timestamps must be in the timezone specified

by the IMetaFieldSet2.SetSourceTimezoneDataUpdates() method (UTC by default).

SendNewTick

SendNewTick(«in» field : EField, «in» tickId : int64, «in» timestamp : DATE,

 «in» value : double, «in» size : double) : void

Report a new tick (trade, best bid or best ask update, etc.). If a tick already exists with the

same timestamp, the new tick will be stored with its timestamp increased by one millisecond.

Please note: Supplying a tickId is only supported for the LAST field. The BID and ASK fields

will return with E_INVALIDARG, if anything but the UnknownTickId is supplied.

SendTickUpdate

SendTickUpdate(«in» field : EField, «in» tickId : int64, «in» timestamp : DATE,

 «in» value : double, «in» size : double) : void

Update the value or volume of a historic tick identified by the tickId. The configuration file

setting IndexTradeIds can be used to improve performance of this method.

Important: It is not recommended to use this function to insert new ticks, the database

search to verify if the tick exists can be time consuming, the SendNewTick() function is

optimized for inserting new ticks with no overhead. If, despite this recommendation, ticks are

inserted with this method, be aware that if a tick already exists with the same timestamp, the

new tick will be stored with its timestamp increased by one millisecond.

SendDeleteTick

SendDeleteTick(«in» field : EField, «in» tickId : int64) : void

Remove a historic tick identified by the tickId.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 31

IBarHistoryRequest : Dispatch

This interface is used to send chunks of cumulated historical data. All timestamps must be in

the timezone specified by the IMetaFieldSet2.SetSourceTimezoneHistoricData() method

(UTC by default).

CreateHistoricChunk

CreateHistoricChunk() : IBarChunk*

Factory method to create a data chunk container.

SendHistoricChunk

SendHistoricChunk(«in» dataChunk : IBarChunk*, «in» moreToFollow : bool) : bool

Send a chunk of data in sequence and inform if more data will be sent. Data is sent from

newest to oldest. If sendMoreChunks is set to false when the function returns, further data

must not be sent.

Please note: If two or more bars with the same timestamp are sent, these will update

previously inserted bars instead of inserting duplicate data.

IBarChunk : Dispatch

This interface is used to prepare a chunk of cumulated data to send to the OpenConnect

service. All timestamps must be in the timezone specified by the

IMetaFieldSet2.SetSourceTimezoneHistoricData() method (UTC by default).

Very important: Data must always be organized newest to oldest.

Add

Add(«in» timestamp : DATE, «in» open : double, «in» high : double,

 «in» low : double, «in» close : double, «in» size : double) : void

Add a bar to the data set.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 32

ITickHistoryRequest : Dispatch

This interface is used to send chunks of historical tick data. All timestamps must be in the

timezone specified by the IMetaFieldSet2.SetSourceTimezoneHistoricData() method (UTC

by default).

CreateHistoricChunk

CreateHistoricChunk() : ITickChunk*

Factory method to create a data chunk container.

SendHistoricChunk

SendHistoricChunk(«in» dataChunk : ITickChunk*, «in» moreToFollow : bool) : bool

Send a chunk of data in sequence and inform if more data will be sent. Data is sent from

newest to oldest. If sendMoreChunks is set to false when the function returns further data

must not be sent.

Please note: If two or more trades with the same timestamp are sent, these will update

previously inserted trades instead of inserting duplicate data.

ITickChunk : Dispatch

This interface is used to prepare a chunk of tick data to send to the OpenConnect service. All

timestamps must be in the timezone specified by the

IMetaFieldSet2.SetSourceTimezoneHistoricData() method (UTC by default).

Very important: Data must always be organized newest to oldest.

Add

Add(«in» tickId : int64, «in» timestamp : DATE, «in» value : double,

 «in» size : double) : void

Add a tick to the data set.

ITickConfirmationRequest : Dispatch

This interface is used to provide a valid tick id for user created data. Timestamps are in the

timezone specified by the IMetaFieldSet.SetExchangeTimezone() method.

ConfirmNewTick

ConfirmNewTick(«in» timestamp : DATE, «in» tickId : int64, «in» value : double,

 «in» size : double) : void

Method to confirm a user created tick with a new tick ID.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 33

Constants : Module

All constants values used by the library.

UnknownTickId An unknown ID for a tick.

EDataPeriod : Enum

The various periods used to represent historical data.

PeriodTick Each individual trade or price change as a data point.

Period1Min Data points representing one minute of activity, timestamp is the end of the inclusive

period, 12:00 = 11:59:00:001 – 12:00:00:000.

Period5Min Data points representing five minutes of activity aligned to hour boundaries,

timestamp is the end of the inclusive period, 12:10 = 12:05:00:001 – 12:10:00:000.

Period30Min Data points representing 30 minutes of activity aligned to hour boundaries,

timestamp is the end of the inclusive period, 12:30 = 12:00:00:001 – 12:30:00:000.

PeriodHourly Data points representing one hour of activity aligned to hour boundaries, timestamp

is the end of the inclusive period, 10:00 = 09:00:00:001 – 10:00:00:000.

PeriodDaily Data points representing one day of activity, timestamp is the start of the day,

01/01/2009 00:00:00 = 00:00:00:000 – 23:59:59:999.

PeriodWeekly Data points representing one week of activity, timestamp is the start of the Sunday

that ends the week.

PeriodMonthly Data points representing one month of activity, timestamp is the start of the last day

of the inclusive month.

ESecurityStatus : Enum

The various states an instrument (security or time) can be in.

StatusActive Updates are normally processed.

StatusStale Updates are temporarily delayed or a (recoverable) problem with the upstream data

feed connection prevents updating the symbol.

StatusClosed No updates will be sent anymore. This should be used for unrecoverable errors only

(e.g. a realtime contract that was previously generating updates and that has just

expired or a symbol that has been ultimately dropped off the upstream source). No

more realtime updates are expected after receiving StatusClosed for a symbol.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 34

EServerStatus : Enum

The various states a server can be in.

ServerConnecting When transitioning from disconnected to connected.

ServerConnected Normal connected state.

ServerDisconnecting When transitioning from connected to disconnected as a result of a MANUAL

stop.

ServerDisconnected When manually shut down.

ServerReconnecting When connection is dropped not as a result of a manual action and automatic

reconnection is in progress.

ServerStale When connected but data is delayed or stalled.

ELogLevel : Enum

The various levels of log messages used to indicate log message importance and

destination.

LogInfo Used to log general messages to the log file only.

LogImportant Used to log significant (e.g. start/stop) messages to the log file and windows log.

LogWarning Used to log warning messages to the log file and windows log.

LogError Used to log error messages to the log file and windows log.

LogDebug Used to log messages to the log file, only if the '[Log]/LogDebug' setting is set to 1.

EField : Enum

Enumeration of the various fields that are supported for historic tick collection.

FieldLast Last trade.

FieldBestBid Best bids.

FieldBestAsk Best asks.

FieldOpenInterest Open interest.

FieldUsrDef1 … FieldUsrDef20 User defined fields (there are actually up to 100 user defined fields

available, to access fields beyond 20, use FieldUsrDef1 + offset

where 20 <= offset <= 99). The content depends on the adapter

module’s implementation. These fields can be named via the

IMetaFieldSet2 interface.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 35

ESecurityNotAvailable : Enum

The possible reasons why a security might not be available.

SecurityNotExisting Used to indicate that a subscription request failed because it does not

exist.

SecurityNotPermissioned Used to indicate that a subscription request failed due to a lack of

permissions.

ECorrectionType : Enum

The various manual tick corrections that can be sent to the upstream server.

CorrectionUpdate An update to the value or volume of an existing tick.

CorrectionDelete An existing tick has been deleted.

CorrectionNew A new tick has been added.

ESecurityType : Enum

The type of a security.

SecurityTypeUndefined

SecurityTypeIndex

SecurityTypeStock

SecurityTypeFuture

SecurityTypeRollingFuture

SecurityTypeCurrency

SecurityTypeOption

SecurityTypeWarrant

SecurityTypeCertificate

SecurityTypeBond

SecurityTypeOther

SecurityTypeFutureSpread Added with OpenConnect SDK 5.7

SecurityTypeGenericSpread Added with OpenConnect SDK 5.7

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 36

SecurityTypeGenericSpot Added with OpenConnect SDK 5.7

SecurityTypeGenericFixing Added with OpenConnect SDK 5.7

ELevel2ResolveResult : Enum

Success and error codes for resolving a Level2 symbol introduced with the OpenConnect

SDK 5.7.

Success The Level2 symbol has been successfully resolved.

NotAvailable There is no Level2 available for the requested symbol.

NoPermission Missing entitlement to access Level2 data for a given symbol.

UnspecifiedError The Level2 symbol could not be resolved due to an unspecified error.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 37

Appendix A – OpenConnect.ini Settings

Section General

AdapterModuleClassId

Set the GUID of the COM class in the Adapter Module that implements the

IOpenConnectAdapterModule interface. This value must be in registry format (e.g.

{6C4D8623-C999-4180-A0F6-F986F610165B}). Unless this value is set OpenConnect will

not start.

PushPort

Set the TCP/IP port that the service will use for clients to obtain data updates. Default value

is 27367.

BackfillPort

Set the TCP/IP port that the service will use for clients to obtain historic and entitlement data.

Default value is 27366.

PersistentSymbols

Set this value to 0 to instruct DataConnect that the Adapter Module is managing the storage

of all data and therefore not to store the data a second time. Disabling this mode will mean

that the requests for historic data may be more frequent as users open and close charts.

Default value is 1 (on).

Important: Only disable the persistent storage of symbols if the Adapter Module provides

data in all supported periods (from tick up to monthly). If only tick data is provided, for

example, the requirement to recumulate daily data for each history request (which may occur

many times per day in this mode) can incur a substantial performance penalty.

IndexTradeIds

Set this to 1 to instruct the DataConnect service to index the unique identifiers associated

with a specific trade, this will substantially boost performance of the

ISubscriptionUpdates.SendTickUpdate() method (and incur a small to moderate degradation

to tick insert performance). This option should be turned on where tick corrections are

commonplace, and there are not too many new ticks per minute per instrument. Default

value is 0 (off).

Please note: Changes to this value will only be applied to newly created instruments.

FieldDefinitionFile

This specifies the name of the file containing definitions for additional instance field. It

defaults to “FieldDefinitions.xml”. See Appendix D – Defining additional fields for more

information.

SupportsCurrencyConversion

OpenConnect feeds can be used for currency conversion in a master/slave configuration

when set to 1. The default is 0 (turned off). See Appendix E – Supplying Currency

Conversion for more information.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 38

Section Logging

LogFile

The name and path of the log file. Default value is ‘OpenConnect.log’.

LogMaxSize

The maximum size of the log file in bytes. If the log file reaches this size a backup of the

current log file will be created and a new log file started. The backup log file will have ‘.old’

appended to its filename. Default value is 16777216 (16MB).

LogDebug

Set to 1 to enable (0 to disable) logging of messages marked with the severity LogDebug.

Default value is 0.

LogRecordCreation

Set to 1 to enable (0 to disable) logging of subscription to symbols. Default value is 0.

LogRecordClients

Set to 1 to enable (0 to disable) logging of individual client’s interest in active symbol

subscriptions. Default value is 0.

LogRecordCache

Set to 1 to enable (0 to disable) logging of changes to the internal subscription cache. Default

value is 0.

LogRecordUpdates

Set to 1 to enable (0 to disable) logging of updates (ticks, corrections, deletions) passing

through an active symbol subscription. Default value is 0.

LogBackfill

Set to 1 to enable (0 to disable) logging of backfill information. Default value is 0.

LogTime

Set to 1 to enable (0 to disable) logging of information about service time processing and

publishing. Default value is 0.

LogTMDSRequests

Set to 1 to enable (0 to disable) logging of information on incoming requests from the

DataConnect service. Default value is 0.

LogEventLoop

Set to 1 to enable (0 to disable) logging of information on how much time threads spend in

the message loop. Default value is 0.

LogErrorForwardToClient

Set this to 1 if all log messages having severity "Error" should also be forwarded to all

connected Tradesignal clients to be displayed as an alert. The default is 0. (Added with the

OpenConnect SDK 5.7)

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 39

LogWarningForwardToClient

Set this to 1 if all log messages having severity "Warning" should also be forwarded to all

connected clients to be displayed as an alert. The default is 0. (Added with the OpenConnect

SDK 5.7)

LogImportantForwardToClient

Set this to 1 if all log messages having severity "Important" should also be forwarded to all

connected clients to be displayed as an alert. The default is 0. (Added with the OpenConnect

SDK 5.7)

Section Internal

TimeSymbol

Specify the name of the symbol that will be advertised to DataConnect as providing time

information. This value must match the symbol entered into the MDS.ini file. This value

should very rarely, if ever, be changed. Default value is ‘.EVAS’.

CacheSeconds

Define the time in seconds a symbol remains active, when the last client dropped the

connection to a subscription record. Default value is 10.

MaxMsInEventLoop

Define the maximum time in milliseconds threads spend in the message loop before they will

be forced to go back to their normal operation. Default value is 5000.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 40

Appendix B – Typical function call scenarios
The following diagram shows the typical sequence of calls at various times during the lifetime

of an Adapter Module.

DataConnect Service Start Up

Open Connect Server Adapter Module

OnRegisterModule

OnConnect

 UpdateServerStatus

 UpdateServerTimeStatus

 UpdateServerTimeUTC

OnSubscribeSecurity

 SecurityNotAvailable If requested security is not
existing

 SendInitialMetaFields If requested security exists

 UpdateSecurityStatus

 SendNewTick Trade Updates

OnRequestHistory

 SendHistoryChunk Requests any missing data

DataConnect Service Shutdown

Open Connect Server Adapter Module

OnUnsubscribeSecurity

OnDisconnect

 UpdateServerStatus

Security added

Open Connect Server Adapter Module

OnSubscribeSecurity

 SecurityNotAvailable If requested security is not
existing

 SendInitialMetaFields If requested security exists

 UpdateSecurityStatus

 SendNewTick Trade Updates

OnRequestHistory

 SendHistoricChunk

Security deleted

Open Connect Server Adapter Module

OnUnsubscribeSecurity

 UpdateSecurityStatus

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 41

Normal operation

Open Connect Server Adapter Module

 UpdateServerStatus When problems occur

 UpdateServerTimeUtc

 SendNewTick

 SendTickUpdate Server tick correction

 SendDeleteTick Server tick correction

 UpdateSecurityStatus Stale, etc.

OnTickUpdated User manually corrects a tick

New user logs on and requests securities

Open Connect Server Adapter Module

OnRequestSecurityListCatalogue

 SendListAsXml

OnRequestSecurityList

 SendListAsXml

OnRequestSecurityAccessRights

 SetSecurityAccessRight

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 42

Appendix C – Passing time stamps in interface methods when

using C++
Time stamps are used in various situations, for example when asking for tick history starting

at a given date (IConnectAdapterModule::OnRequestTickHistoryFromDate) or when providing the

data via ITickChunk::Add. OpenConnect supports stamps with millisecond granularity.

Time stamps are passed in COM interfaces via the automation data type called DATE (which

basically is a typedef of a double precision floating point, with sufficient precision to transport

time stamps with millisecond granularity). When the adapter module is implemented using

the .NET runtime (e.g. when using the C# language), you can skip the remainder of this

section as the .NET DateTime class supports millisecond granularity and will convert correctly

when passed as a DATE.

When implementing the adapter module using unmanaged C++, there are a few caveats to

consider when converting to or from the DATE data type. The usual way to convert to a DATE is

to use Win32 functions like SystemTimeToVariantTime or VariantTimeToSystemTime or to use the

COleDateTime class (which utilizes these functions under the hood). The problem is that these

functions and the COleDateTime helper class have a limited granularity of only up to one

second. Conversion to or from a DATE will thus lose milliseconds precision. The code below

demonstrates how to avoid this problem. Note that in the following examples we are utilizing

SYSTEMTIME as a milliseconds aware date/time structure; TIMESTAMP_STRUCT (when using ODBC)

or FILETIME could also be used.

Converting from SYSTEMTIME to DATE keeping millisecond precision

// the following example shows how to create a DATE with milliseconds granularity:
SYSTEMTIME timestampWithMs = ...; // assume timestampWithMs gets populated by data source

// the following call to SystemTimeToVariantTime will lose the millisecond granularity
// we are not passing in the millisecond part because this may lead to rounding.
int savedMilliseconds = timestampWithMs.wMilliseconds;
timestampWithMs.wMilliseconds = 0;
DATE dateTimeWithoutMs;
if (!SystemTimeToVariantTime(×tampWithMs, &dateTimeWithoutMs))
 ... // handle error

// add milliseconds saved above
const int millisecondsPerDay = 1000 * 60 * 60 * 24;
DATE dateTimeWithMs = dateTimeWithoutMs + (1.0 / millisecondsPerDay) * savedMilliseconds;

// example usage: populate tick chunk
CComPtr<ITickChunk> pChunk;
pTickHistoryRequest->CreateHistoricChunk(&pChunk);
pChunk->Add(dateTimeWithMs, open, high, low, close, size);

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 43

Converting from DATE to SYSTEMTIME keeping millisecond precision

// example usage: cracking a DATE passed in via OnRequestTickHistoryFromDate()
DATE dateTimeWithMs;
OnRequestTickHistoryFromDate(security, field, pHistoryRequest, dateTimeWithMs);

// calculate millisecond part from given DATE
const int msPerSecond = 1000;
const int msPerDay = msPerSecond * 60 * 60 * 24;
int savedMs = (((int)((fmod(dateTimeWithMs, 1.0) * msPerDay) + .5)) % msPerSecond);

// like SystemTimeToVariantTime, VariantTimeToSystemTime may involve rounding
// we avoid this by not passing in the milliseconds
SYSTEMTIME timestampWithMs;
if (!VariantTimeToSystemTime(dateTimeWithMs - savedMs * (1.0/msPerDay), ×tampWithMs))
 ... // handle error

// set milliseconds in SYSTEMTIME structure
timestampWithMs.wMilliseconds = savedMs;

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 44

Appendix D – Defining additional fields
Tradesignal allows displaying symbol-related, additional information delivered by the

upstream data provider in form of so-called quote fields. Fields, which may be textual or

numeric information, can be displayed as columns in watchlist, scanner, or portfolio

documents. Examples for quote fields would be the last price, the date of the last trade,

today’s high price, or the currency a symbol is traded in.

The IMetaFieldSet interface already allows defining a set of predefined, common fields that
can also be accessed in the way described above. Starting from version 5.5, OpenConnect
and DataConnect allow user-defined, arbitrary quote fields, defined through a dedicated XML
document and set through IMetaFieldSet2 (SetStringField, SetIntegerField, SetDoubleField).

A field definition contains of a unique integer id, a short name (acronym), a short display
name (which will be used by Tradesignal to label columns), an optional explanatory
description and a data type indication. See the following XML schema for a description of the
XML definition file:

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="fieldId">

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="500000"/>

 <xs:maxInclusive value="599999"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="fieldAcronym">

 <xs:restriction base="xs:string">

 <xs:pattern value="[a-zA-Z][a-zA-Z0-9_]*"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="fieldDisplayName">

 <xs:restriction base="xs:string">

 <xs:minLength value="1"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="fieldType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="int"/>

 <xs:enumeration value="double"/>

 <xs:enumeration value="string"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="field-definitions">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="field" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="id" type="fieldId" use="required"/>

 <xs:attribute name="name" type="fieldAcronym" use="required"/>

 <xs:attribute name="display" type="fieldDisplayName" use="required"/>

 <xs:attribute name="type" type="fieldType" default="string"/>

 <xs:attribute name="description" type="xs:string" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 45

The following represents an example field definition xml that describes a floating point, an
integer, and a text field:

<?xml version="1.0" encoding="utf-8"?>

<field-definitions>

 <field id="500000" name="STRIKE_RATIO" display="Strike Ratio" type="double"

description="The number of equity shares per warrant."/>

 <field id="500001" name="TODAY_BID_NUM" display="Bids Today" type="int"

description="The number of bids made for an instrument today."/>

 <field id="500002" name="MKT_M_NAME" display="Market Maker Name" type="string"

description="The name of the market maker."/>

</field-definitions>

The field definition file will be read when the OpenConnect service starts up. The default
location of the file is FieldDefinitions.xml in the same directory where the OpenConnect.ini
resides. If there is the need to relocate and/or rename the field definition file, this can be
achieved by pointing the setting [General] FieldDefinitionFile to the new location.
When field definitions have to be added or changed while the OpenConnect service keeps
on running, this can be achieved by instructing DataConnect to reload the field definitions
using the reloadfields command, e.g. reloadfields CSV: would reload the field definitions
from the DataConnect extension service having the prefix CSV:. DataConnect will also notify
connected Tradesignal clients of the updated fields so that new fields can be immediately
made available in Tradesignal.

The following sample source code will exemplify how to update the values for the three fields
defined above and then how to instruct forwarding them to DataConnect (and on to
connected Tradesignal clients):

// create meta field set via request previously retrieved
IMetaFieldSet metaData = request.CreateMetaFieldSet();
IMetaFieldSet2 metaData2 = (IMetaFieldSet2)metaData;

// set/update user-defined fields
metaData2.SetDoubleField("STRIKE_RATIO", 123.45);
metaData2.SetIntegerField("TODAY_BID_NUM", 27367);
metaData2.SetStringField("MKT_M_NAME", "XYZ Bank")

// forward update to clients
ISubscriptionUpdates updateInterface;
request.SendInitialMetaFields(metaData, out updateInterface);

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 46

Appendix E – Supplying Currency Conversion Information
Tradesignal and DataConnect allow converting the currency a security is quoted in to a

different target currency. Security prices are then historically adapted using rates from the

base and the target currency spanning the same time frame as the underlying instrument.

OpenConnect related settings

Introduced in version 5.5, OpenConnect adapter modules can provide currencies for
conversion purposes. The following OpenConnect.ini setting must be set to enable this
feature (restart necessary):

[General]

SupportsCurrencyConversion=1

Information on the available set of currencies has to be exposed in a dedicated XML
definition file adhering to the following XML schema:

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="currencies">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="currency" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="symbol" type="xs:string" />

 <xs:attribute name="base" type="xs:string" use="required"/>

 <xs:attribute name="inverted" type="xs:boolean" default="0"/>

 <xs:attribute name="factor" type="xs:nonNegativeInteger" default="1"/>

 <xs:attribute name="name" type="xs:string" use="required" />

 <xs:attribute name="iso" type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

The default file name used for this purpose is CurrencyDefintions.xml in the same directory

where OpenConnect.ini resides. If necessary, the following setting is available to specify an

alternative file path:

[General]

CurrencyDefinitionFile=...

Here is the content of an example currency definition file:

<?xml version="1.0" encoding="utf-8"?>

<currencies>

 <currency iso="AUD" base="USD" factor="1" inverted="1" name="AUSTRALIAN DOLLAR" symbol="AUDUSD" />

 <currency iso="AUc" base="AUD" factor="100" inverted="1" name="AUSTRALIAN CENTS" symbol="" />

 <currency iso="CAD" base="USD" factor="1" inverted="0" name="CANADIAN DOLLAR" symbol="USDCAD" />

 <currency iso="CAc" base="CAD" factor="100" inverted="0" name="CANADIAN CENTS" symbol="" />

 <currency iso="CHF" base="USD" factor="1" inverted="0" name="SWISS FRANC" symbol="USDCHF" />

 <currency iso="EUR" base="USD" factor="1" inverted="1" name="EURO" symbol="EURUSD" />

 <currency iso="EUc" base="EUR" factor="100" inverted="1" name="EURO CENTS" symbol="" />

 <currency iso="GBP" base="USD" factor="1" inverted="1" name="BRITISH POUND" symbol="GBPUSD" />

 <currency iso="GBp" base="GBP" factor="100" inverted="1" name="BRITISH PENCE" symbol="" />

 <currency iso="USD" base="USD" factor="1" inverted="1" name="UNITED STATES DOLLAR" symbol="" />

 <currency iso="USc" base="USD" factor="100" inverted="1" name="UNITED STATES CENTS" symbol="" />

</currencies>

The entries present in this XML file will constitute the list of target currencies displayed in the

Currency field of Tradesignal’s instrument property inspector.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 47

The “iso” attribute has to contain a target currency referring to an ISO 4217 three letter code.

The “base” attribute defines the reference currency, which is usually USD. The exception to

this rule are subdivision currencies like the Euro cent (EUc), which is worth 1/100th of one

unit of its base (EUR). The “factor” attribute for EUc is therefore 100.

The “symbol” attribute defines the OpenConnect adapter’s symbol code to be used for this

currency.

The “inverted” flag defines how the currency is quoted – direct (inverted=”0”) or indirect

(inverted=”1”) to the base, e.g. target against base like in symbol AUDUSD above or base

against target like in USDCAD. AUDUSD: Amount of AUD per USD; USDCAD: Amount of

USD per unit of CAD.

Note that changing the currency definition file demands restarting the OpenConnect service.

DataConnect related settings

DataConnect forwards currency information to Tradesignal that is provided by one particular

data feed. In case more than one data feed is configured, the DataConnect Console can

specify, which data feed to ask for currency data when a conversion needs to be calculated.

This can be done via Settings > Data Service (General) > Data feed used to load data for

currency conversion.

When the provided currency conversion file is changed, template pages should be reloaded

to keep DataConnect and Tradesignal up to date with all available conversion currencies.

This can be achieved in the DataConnect Console via Application Button > Run Nightly

Maintenance > Force Template Reload. Note that currently connected Tradesignal clients

may have to reconnect (or alternatively restart) in order to use updated currency information.

This document contains confidential or proprietary information intended only for the recipient(s).If you are not one of the intended
recipients, please contact Tradesignal GmbH and delete this document immediately. Any unauthorized copying or distribution of
this document or the unauthorized disclosure of all or part of the information contained herein, is expressly forbidden.

 48

Appendix F – Supporting non-default Weekly Candles
Usually weekly candles span from Monday (first inclusive day) till Sunday (last inclusive day).

However, this is not true for every country, e.g. some Middle Eastern places have a different

notion of weekends, and thus, what is generally considered as the first day of the week will

be different from the Western view.

In Dubai, for example, the two weekend days are Friday and Saturday and thus the first day

of the week falls on the Sunday. In Saudi Arabia this looks a bit different again, i.e. in Riyadh

the weekend is celebrated on Thursdays and Fridays, so the first day of the working week

will fall on a Saturday.

DataConnect allows OpenConnect adapter module implementers to define the first day of the

week on a per symbol basis through the IMetaField2 interface and the SetStringField

function, providing “OC_WEEK_WORKDAY1” as the field identifier and an English week day to be

used as the first day of the week (“Monday”, “Tuesday”, ..., or the respective three letter

abbreviations “MON”, “TUE”, ...). If such a field is not explicitly populated, the default value (the

Monday) will apply.

Note that if you want to change a symbol’s weekly candle definition by providing an update

for this field, you will have to instruct DataConnect to re-summarize existing data for affected

instruments afterwards (e.g. by forcing a session template update through the nightly

maintenance, available via the Console’s default menu).

	IResolveLEvel2SymbolRequest

